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Abstract

One of the fundamental components of large-scale gene discovery projects is that of clustering of expressed sequence tags
(ESTs) from complementary DNA (cDNA) clone libraries. Clustering is used to create non-redundant catalogs and indices
of these sequences. In particular, clustering of ESTs is frequently used to estimate the number of genes derived from cDNA-
based gene discovery efforts. This paper presents a novel parallel extension to an EST clustering program,UIcluster4 , that
incorporates alternative splicing information and a new parallelization strategy. The results are compared to other parallelized
EST clustering systems in terms of overall processing time and in accuracy of the resulting clustering.
© 2004 Published by Elsevier B.V.
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. Introduction

The sequencing of cDNA libraries is the most com-
on format for gene discovery in higher eukaryotes.
he goal of such a project is to utilize the sequences
erived from the cDNAs (ESTs; expressed sequence

ags) to derive a non-redundant set. This set ideally rep-
esents an organism’s entire complement of genes. The
enefits of EST-based gene discovery include the abil-

ty to rapidly identify transcribed genes, the ability to
dentify exon-intron structure (when coupled with ge-
omic sequence), and information on gene expression.
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However, different genes are multiply expresse
different levels in cells. The presence of this “r
dom” redundancy within the EST databases requ
a programmatic method to calculate the complem
of genes they represent. These methods (termed
tering) utilize sequence-based comparisons to d
mine sets of strongly similar sequences (clusters).
primary difficulty associated with EST-based ge
discovery projects is that ESTs are single-pass
quences, and as such they are relatively error p
(approximately 3% on average[1]).

The NCBI provides an EST sequence reposi
(dbEST)[2] as well as a curated and annotated g
index (UniGene)[3] for several species, utilizin
the available mRNA and EST sequences to esti
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the gene complement. This paper describes and
compares several programs that may be used to create
non-redundant “UniGene” sets from EST data, and
analyzes three different approaches for parallelization
of this task.

2. Background

Clustering plays an important role in large scale
gene-discovery projects. It not only saves time by iden-
tifying redundant sequences but also provides useful
information regarding gene-discovery rate[4].

There are several varying clustering methods and
tools in use today. However, the objective of all such
methods is to effectively assess the similarity between
sequences and place them into equivalence classes. Ide-
ally, these classes correspond, one to one, onto distinct
genes. A number of other criteria, not apparent in the
primary RNA sequence data, are necessary for such
a classification. However, a sequence-based classifica-
tion is highly useful. One of the most widely used clus-
tering tools is NCBI’s Unigene clustering[5]. It uses
global pairwise sequence comparison, and a stringent
protocol for assigning closely related sequences to a
common cluster. However, it does not support incre-
mental clustering. Hence, each clustering “build” must
begin from the same initial starting point. As the num-
ber of known ESTs inHomo sapienscurrently (2004)
stands at oevr 5 million, and requires upto one month of
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The following is a brief description of the under-
lying approach ofUIcluster . As each sequence is
read from an input file, it is compared against all exist-
ing clusters. This comparison is performed only with
the primary element of each cluster, where the primary
is a single representative sequence of the entire clus-
ter (usually the longest, and therefore most informative
member). If the incoming sequence matches, or “hits”
any cluster primary, and further satisfies specified sim-
ilarity criteria, it is added to that cluster. Otherwise, the
incoming sequence itself becomes the primary element
of a new cluster.

3. Approach and implementation

The performance of EST clustering is measured
both by time as well as by memory resource utiliza-
tion characteristics. Although the use of a primary
sequence for each cluster significantly reduces both
these requirements, space remains a limiting factor for
large data sets. Given the nature of the problem and
the size of the data set, parallelization is an obvious
choice for the implementation of this process. Compu-
tational and memory requirements can be distributed
across several computers. This allows the software to
scale to larger problem sizes.UIcluster currently
implements two different approaches of paralleliza-
tion, distributing across the cluster space and the in-
put space. The message passing interface (MPI)[10]
s ions,
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omputation time, the benefit of performing increm
al clustering becomes obvious. Also, an EST rela
o two different clusters is often discarded, overlook
ny possible alternative splice sites. A number of o

nstitutes and labs have developed other serial met
or EST clustering[6–8]. TheUIcluster family of
olutions (both serial and parallel) has been evol
n a production environment at the University of Io
ince 1997. The key characteristics ofUIcluster are
ncremental clustering, the maintenance of a repre
ative element (primary) for each cluster, and a has
cheme to quickly identify potentially meaningful clu
er matches for each newly considered input seque
he stringency of the clustering is a user-definable
ameter, although performance is sensitive to this
ect. The parallelization ofUIcluster based upo
oth cluster space[9], and input space, is the main foc
f this paper.
tandard is used for inter-process communicat
nd distribution is done among multiple UNIX pr
esses.

.1. Parallelization on cluster space

In this scheme of parallelization, implemented
Icluster3 , each cluster is stored on exactly o
ompute node. The clusters are evenly distrib
mong all nodes. When a sequence is brought

s copied to all available nodes and is processed in
llel. Since each node has a different set of clusters

ncoming sequence is compared with the divided c
er space in parallel. Each node then communicate
est local match to all other nodes. The node with
est match adds the sequence to its cluster space.
o match is found, the sequence is designated as
luster and assigned to one compute node.
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3.2. Parallelization on input space

The input space is parallelized by dividing the se-
quences intoN non-overlapping groups, whereN is
the number of compute nodes available. Instead of dis-
tributing clusters over different compute nodes and pro-
cessing each sequence at all nodes, in this scheme each
node gets a fraction of the sequences. This is similar
to running the sequential version ofUIcluster in
parallel on all nodes with an abridged dataset. Each
node computes its own set of primaries. In the sec-
ond stage, these primaries are compared amongst them-
selves and related clusters are merged. The efficiency
of this scheme is heavily dependent on the redundancy
within the dataset. If the data is highly redundant, the
clusters on each node are more likely to be merged,
involving more communication and added processing.
Alternatively, lower redundancy yields more clusters.

4. Results

4.1. Description of experiment

To evaluate the performance of different clustering
methods, several data sets fromArabidopsis thaliana
and Homo sapienswere used. The methods com-
pared include parallelizing on the cluster space
(UIcluster3 ), parallelizing on the input space
(UIcluster4 ), and the suffix-tree based method of
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Table 1
Execution time performance comparison

Number of
sequences

PaCE UIcluster3 UIcluster4

5,000 10 min 37 s 1 min
10,000 28 min 2 min and 7 s 3 min and 28 s
20,000 1 h and 44 min 8 min and 42 s 12 min
30,000 Out of memory 20 min 25 min 12 s

scripts from which the cDNAs were derived. Details of
this analysis may be found in[11].

4.2. Performance assessment

Both memory utilization and computation time were
measured across these data sets. Table 1 presents the
execution time for the same analyses. In this compar-
ison,UIcluster3 requires approximately one-tenth
of the time ofPaCE. As the number of input sequences
increased, the relative difference in computation time
betweenUIcluster4 andUIcluster3 decreased.
With only 5000 sequences,UIcluster4 required ap-
proximately 60% longer thanUIcluster3 on the
same set of sequences. However, on the set of 30,000
sequences, that difference was only 26%. A similar
reduction in computation time is observed between
PaCE and UIcluster3 with PaCE requiring ap-
proximately 16-fold more computation for 5000 se-
quences, but only 12-fold more in the data set of 20,000
sequences.

Peak memory utilization was assessed on a single
node with 1 GB of memory, using a subset of the hu-
man EST data set. Fig. 1 shows the peak memory usage
by the three clustering programs. Although thePaCE
program has to use at least two nodes (one master and
one slave node) only the memory utilization for the
slave node was measured, because it performs sequence
comparisons. Values were unavailable forPaCEwith
the 30,000 EST data set, as it exhausted the available
m ire-
m
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t
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c

ing
t nces
f za-
aCE. ThePaCEclustering program[8] was included
o analyze both parallel speedup and memory req
ents. The publically available UniGene clusters f
CBI were used to asses the accuracy of the res
he system used in this comparison was a 16 n
ual processor cluster of 500 MHz Pentium III’s, e
quipped with one Gigabyte of memory. The hum
ST data set consisted of 41,197 sequences with a
rage length of 403 bp. TheArabidopsis thalianaEST
ata set contained 81,414 sequences with an av

ength of 411 bp. The latter data set was used for c
aring the accuracy between the programs. The
f A. thalianarather than human ESTs was import

n reducing the effect of known genes on the pu
equence-based clustering. Although performan
ritical in making the clustering results available,
he main focus of this paper, they must also pro
n accurate reflection of the underlying mRNA tr
emory. Note from this figure that the memory requ
ents ofUIcluster4 increase faster thanUIclus-

er3 as the number of input sequences grows. W
he same computation is run in parallel withUIclus-
er4 , the memory requirement per node is sign
antly reduced, as fewer clusters must be stored.

A final performance analysis was performed us
he complete set of human EST and mRNA seque
rom human UniGene build (#159). The paralleli
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Fig. 1. Memory utilization.

tion on the input space method was used to predict
the final number of clusters and the computation time
required. This data set contained nearly 4.2 million se-
quences. The clustering, utilizing 12 nodes, requires
an estimated computation time of 100 h. For this ex-
periment, the data set was divided into 12 files each
containing one twelfth of the ESTs. Thus each file con-
tained roughly 400,000 EST sequences. All of the se-
quences longer than 1100 bp were put into a separate
file. These thirteen sequence files were first clustered
individually. The resulting cluster files were then clus-
tered together to compute the complete set of clusters
for the 4.2 million EST sequences. Unfortunately, the
final clustering step required more memory than was
available. Therefore, the computation time of that com-
ponent was estimated.

5. Conclusions

An alternative scheme for parallel clustering using
UIcluster has been described in this paper. The pro-
gram is comparable in accuracy to other clustering pro-
grams, but requires less computation time. Depending
upon the nature of the data set, either of the paralleliza-
tion schemes may be used to optimize the memory or
computation requirements.

Acknowledgements

n-
d ith
t s
A wa

State University for their assistance in obtaining and
using thePaCEclustering program, and Thomas Bair,
Dylan Tack, Jason Grundstad, Jared Bischof, Brian
O’Leary and Jesse Walters for their help and sugges-
tions.

References

[1] L. Hillier, N. Clark, T. Dubuque, K. Elliston, M. Hawkins,
M. Holman, M. Hultman, T. Kucaba, M. Le, G. Lennon, M.
Marra, J. Parsons, L. Rifkin, T. Rohlfing, M. Soares, F. Tan,
E. Trevaskis, R. Waterston, A. Williamson, P. Wohldmann, R.
Wilson, Generation and analysis of 280,000 human expressed
sequence tags, Genome Res. 6 (1996) 807–828.

[2] M.S. Boguski, T.M. Lowe, C.M. Tolstoshev, dbEST — database
for ‘expressed sequence tags’, Nature Genet. 4 (1993) 332–333.

[3] G.D. Schuler, Pieces of the puzzle: expressed sequence tags and
the catalog of human genes, J. Molec. Med. 75 (1997) 694–698.

[4] M.F. Bonaldo, G. Lennon, M.B. Soares, Normalization and sub-
traction: two approaches to facilitate gene discovery, Genome
Res. 6 (1996) 791–806.

[5] http://www.ncbi.nlm.nih.gov/UniGene/build.shtml.
[6] M.D. Adams, A.R. Kerlavage, R.D. Flieshmann, R.A. Fuldner,

C.J. Bult, N.H. Lee, E.F. Kirkness, K.G. Weinstock, J.D. Go-
cayne, O. White, Initial assessment of human gene diversity
and expression patterns based upon 83 million nucleotides of
cDNA sequence, Nature 377 (1995) 3–17.

[7] R.T. Miller, A.G. Christoffels, C. Gopalakrishnan, J.A. Burke,
A.A. Ptitsyn, T.R. Broveak, W.A. Hide, A comprehensive ap-
proach to clustering of expressed human gene sequence: the se-
quence tag alignment and consensus knowledgebase, Genome
Res. 9 (1999) 1143–1155.

ient
onf.

etz,
.B.
gene
The authors would like to thank Dr. Volker Bre
el from Iowa State University for providing us w

he test set of 81,141A. thalianaESTs, Dr. Sriniva
luru and Anantharaman Kalyanaraman from Io
[8] A. Kalyanaraman, S. Aluru, S. Kothari, Space and time effic
parallel algorithms and software for EST clustering, Int. C
Parallel Process. (2002) 331.

[9] N. Trivedi, J. Bischof, S. Davis, K. Pedretti, T.E. Sche
T.A. Braun, C.A. Roberts, N.L. Robinson, V.C. Sheffield, M
Soares, T.L. Casavant, Parallel creation of non-redundant



T.E. Scheetz et al. / Future Generation Computer Systems 21 (2005) 731–735 735

indices from partial mRNA transcipt, Future Generation Com-
puter Syst. 18 (2002) 863–870.

[10] Message Passing Interface Form: MPI: a message-passing inter-
face standard, University of Tennessee Technical Report, 1994,
CS–94230.

[11] N. Trivedi, K.T. Pedretti, T.A. Braun, T.E. Scheetz, T.L. Casa-
vant, Alternative parallelization strategies in EST clustering, in:
V. Malyshkin (Ed.), Lecture Notes in Computer Science, vol.
237, Springer-Verlag, Heidelberg, 2003, 384–393.

Todd Edward Scheetzreceived the BS de-
gree (1993) in Electrical Engineering, the
MS degree (1995) in Electrical and Com-
puter Engineering, and the PhD (2001) in
Genetics from The University of Iowa. In
2003, he joined the Faculty of Ophthalmol-
ogy and Visual Sciences at the University of
Iowa, Iowa City, Iowa. He has co-authored
several papers in the areas of high perfor-
mance computer architecuture and parallel
systems, and bioinformatics. His research

interests include bioinformatics, disease gene identification, map-
ping, data-mining, parallel and distributed processing, and operating
systems.

Kevin Thomas Pedretti received a BS
(1999) in Electrical Engineering, and an MS
(2001) in Electrical and Computer Engi-
neering from The University of Iowa. He
is currently a system software developer
at Sandia National Laboratories in Albu-
querque, NM. Current research interests in-
clude scalable operating systems, scalable
computer architectures, and bioinformatics.

-
93)
ni-
In
al

ual
, he
ry

co-
igh

performance computer architecuture before research interests fo-
cussed on genetics, bioinformatics and computational biology. Cur-
rent research interests include disease gene identification and pri-
oritization using automated knowledge discovery and sequence
analysis.

Thomas Lee Casavantis currently Profes-
sor of Electrical and Computer Engineering
at the University of Iowa. He received the
BS degree in Computer Science in 1982, the
MS degree in Electrical and Computer En-
gineering in 1983, and the PhD degree in
Electrical and Computer Engineering from
the University of Iowa in 1986. In 1986,
Dr. Casavant joined the the Faculty of the
School of Electrical Engineering at Purdue
University, West Lafayette, Indiana special-

izing in the design and analysis of parallel/distributed computing
systems, environments, algorithms, and programs. From 1987 to
1989, he was Director of the PASM Parallel Processing Project,
and the Purdue EE School’s Parallel Processing Laboratory. He
has developed graduate courses in advanced computer architecture,
distributed computing, parallel processing, and computational bi-
ology. In 1989, he joined the faculty of the Iowa ECE Depart-
ment and was promoted to Professor in 1999. There, he is director
of both the Center for Bioinformatics and Computational Biology
as well as the Parallel Processing Laboratory. Since 1996, he has
led Computational Molecular Biology efforts in Gene Discovery,
Mapping, and Disease Gene Identification/Isolation. From 1993 to
1994, he was a guest professor with the Department of Informatik
at the ETH (Eidgenossisch Technische Hochschule — Swiss Fed-
eral Institute of Technology) in Zurich, Switzerland. In 2000, he
was a guest researcher in the Biochimie et Biophysique des Sys-
temes Integres Laboratory and the CEA/CNRS (Centre National de
l e) in
G d over
1 Com-
p and
D n
P l
a rials
w

Terry Allen Braun received a PhD in Ge
netics (2001), and MS (1995) and BS (19
degrees in Electrical and Computer E
geneering from the University of Iowa.
2002, he joined the Faculty of Biomedic
Engineering and Ophthalmology and Vis
Sciences at the University of Iowa. There
is director of the Coordinated Laborato
for Computational Genomics. He has
authored several papers in the area of h
a Recherche Scientifique/Commissariat a l’Energie Atomiqu
renoble, France. Dr. Casavant has authored or co-authore
00 technical articles in Computer Science/Engineering and
utational Biology/Bioinformatics, edited two books on Parallel
istributed Computing, served as editor forIEEE Transactions o
arallel and Distributed Processingand theJournal of Paralle
nd Distributed Computing, and has presented numerous tuto
orldwide.


	Gene transcript clustering: a comparison of parallel approaches
	Introduction
	Background
	3Approach and implementation
	Parallelization on cluster space
	Parallelization on input space

	4Results
	Description of experiment
	Performance assessment

	Conclusions
	Acknowledgements
	References


